Avian Eggshell Membrane as a Novel Biomaterial: A Review (2024)

1. Hincke M.T., Nys Y., Gautron J. The role of matrix proteins in eggshell formation. J. Poult. Sci. 2010;47:208–219. doi:10.2141/jpsa.009122. [CrossRef] [Google Scholar]

2. Mann K., Maek B., Olsen J.V. Proteomic analysis of the acidsoluble organic matrix of the chicken calcified eggshell layer. Proteomics. 2006;6:3801–3810. doi:10.1002/pmic.200600120. [PubMed] [CrossRef] [Google Scholar]

3. Nakano T., Ikawa N.I., Ozimek L. Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 2003;82:510–514. doi:10.1093/ps/82.3.510. [PubMed] [CrossRef] [Google Scholar]

4. Gautron J., Hincke M.T., Panheleux M., Garcia-Ruiz J.M., Boldicke T., Nys Y. Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer. Connect. Tissue Res. 2001;42:255–267. doi:10.3109/03008200109016840. [PubMed] [CrossRef] [Google Scholar]

5. Hincke M.T., Gautron J., Panheleux M., Garcia-Ruiz J., McKee M.D., Nys Y. Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. Matrix Biol. 2000;19:443–453. doi:10.1016/S0945-053X(00)00095-0. [PubMed] [CrossRef] [Google Scholar]

6. Nys Y., Gautron J., Garcia-Ruiz J.M., Hincke M.T. Avian eggshell mineralization: Biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol. 2004;3:549–562. doi:10.1016/j.crpv.2004.08.002. [CrossRef] [Google Scholar]

7. Arias J.L., Fink D.J., Xiao S.-Q., Heuer A.H., Caplan A.I. Biomineralization and Eggshells: Cell-Mediated Acellular Compartments of Mineralized Extracellular Matrix. In: Jeon K.W., Jarvik J., editors. International Review of Cytology. Volume 145. Academic Press; Cambridge, MA, USA: 1993. pp. 217–250. [PubMed] [Google Scholar]

8. Li Y., Li Y., Liu S., Tang Y., Mo B., Liao H. New zonal structure and transition of the membrane to mammillae in the eggshell of chicken Gallus domesticus. J. Struct. Biol. 2018;203:162–169. doi:10.1016/j.jsb.2018.04.006. [PubMed] [CrossRef] [Google Scholar]

9. Lee S.-M., Grass G., Kim G.-M., Dresbach C., Zhang L., Gösele U., Knez M. Low-temperature ZnO atomic layer deposition on biotemplates: Flexible photocatalytic ZnO structures from eggshell membranes. Phys. Chem. Chem. Phys. 2009;11:3608–3614. doi:10.1039/b820436e. [PubMed] [CrossRef] [Google Scholar]

10. Bellairs R., Boyde A. Scanning electron microscopy of the shell membranes of the hen’s egg. Z. Für Zellforsch. Mikrosk. Anat. 1969;96:237–249. doi:10.1007/BF00338771. [PubMed] [CrossRef] [Google Scholar]

11. Liong J., Frank J.F., Bailey S. Visualization of Eggshell Membranes and Their Interaction with Salmonella enteritidis Using Confocal Scanning Laser Microscopy. J. Food Prot. 1997;60:1022–1028. doi:10.4315/0362-028X-60.9.1022. [PubMed] [CrossRef] [Google Scholar]

12. Zhou J., Wang S., Nie F., Feng L., Zhu G., Jiang L. Elaborate architecture of the hierarchical hen’s eggshell. Nano Res. 2011;4:171–179. doi:10.1007/s12274-010-0067-8. [CrossRef] [Google Scholar]

13. Baláž M. Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 2014;10:3827–3843. doi:10.1016/j.actbio.2014.03.020. [PubMed] [CrossRef] [Google Scholar]

14. Chowdhury S.D. Shell membrane protein system in relation to lathyrogen toxicity and copper deficiency. World’s Poult. Sci. J. 1990;46:153–169. doi:10.1079/WPS19900018. [CrossRef] [Google Scholar]

15. D’Ambrosio C., Arena S., Scaloni A., Guerrier L., Boschetti E., Mendieta M.E., Citterio A., Righetti P.G. Exploring the Chicken Egg White Proteome with Combinatorial Peptide Ligand Libraries. J. Proteome Res. 2008;7:3461–3474. doi:10.1021/pr800193y. [PubMed] [CrossRef] [Google Scholar]

16. Leach R.M. Biochemistry of the Organic Matrix of the Eggshell. Poult. Sci. 1982;61:2040–2047. doi:10.3382/ps.0612040. [CrossRef] [Google Scholar]

17. Wong M., Hendrix M.J.C., von der Mark K., Little C., Stern R. Collagen in the egg shell membranes of the hen. Dev. Biol. 1984;104:28–36. doi:10.1016/0012-1606(84)90033-2. [PubMed] [CrossRef] [Google Scholar]

18. Carrino D.A., Dennis J.E., Wu T.M., Arias J.L., Fernandez M.S., Rodriguez J.P., Fink D.J., Heuer A.H., Caplan A.I. The avian eggshell extracellular matrix as a model for biomineralization. Connect. Tissue Res. 1996;35:325–329. doi:10.3109/03008209609029207. [PubMed] [CrossRef] [Google Scholar]

19. Arias J.L., Nakamura O., Fernández M.S., Wu J.J., Knigge P., Eyre D.R., Caplan A.I. Role of type X collagen on experimental mineralization of eggshell membranes. Connect. Tissue Res. 1997;36:21–33. doi:10.3109/03008209709160211. [PubMed] [CrossRef] [Google Scholar]

20. Mao Y., Schwarzbauer J.E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24:389–399. doi:10.1016/j.matbio.2005.06.008. [PubMed] [CrossRef] [Google Scholar]

21. Gonçalves R.F., Wolinetz C.D., Killian G.J. Influence of arginine-glycine-aspartic acid (RGD), integrins (αV and α5) and osteopontin on bovine sperm-egg binding, and fertilization in vitro. Theriogenology. 2007;67:468–474. doi:10.1016/j.theriogenology.2006.08.013. [PubMed] [CrossRef] [Google Scholar]

22. Nys Y., Gautron J., Mckee M.D. Biochemical and functional characterisation of eggshell matrix proteins in hens. Worlds Poult. Sci. J. 2001;57:401–413. doi:10.1079/WPS20010029. [CrossRef] [Google Scholar]

23. Rønning S.B., Berg R.S., Høst V., Veiseth-Kent E., Wilhelmsen C.R., Haugen E., Suso H.P., Barham P., Schmidt R., Pedersen M.E. Processed Eggshell Membrane Powder Is a Promising Biomaterial for Use in Tissue Engineering. Int. J. Mol. Sci. 2020;21:8130. doi:10.3390/ijms21218130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Ahmed T.A.E., Suso H.P., Maqbool A., Hincke M.T. Processed eggshell membrane powder: Bioinspiration for an innovative wound healing product. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;95:192–203. doi:10.1016/j.msec.2018.10.054. [PubMed] [CrossRef] [Google Scholar]

25. Padrão T., Coelho C.C., Costa P., Alegrete N., Monteiro F.J., Sousa S.R. Combining local antibiotic delivery with heparinized nanohydroxyapatite/collagen bone substitute: A novel strategy for osteomyelitis treatment. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;119:111329. doi:10.1016/j.msec.2020.111329. [PubMed] [CrossRef] [Google Scholar]

26. Rose-Martel M., Smiley S., Hincke M.T. Novel identification of matrix proteins involved in calcitic biomineralization. J. Proteom. 2015;116:81–96. doi:10.1016/j.jprot.2015.01.002. [PubMed] [CrossRef] [Google Scholar]

27. Jensen T., Dolatshahi-Pirouz A., Foss M., Baas J., Lovmand J., Duch M., Pedersen F.S., Kassem M., Bünger C., Søballe K., et al. Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces. Colloids Surf. B Biointerfaces. 2010;75:186–193. doi:10.1016/j.colsurfb.2009.08.029. [PubMed] [CrossRef] [Google Scholar]

28. Zhu Y.S., Gu Y., Jiang C., Chen L. Osteonectin regulates the extracellular matrix mineralization of osteoblasts through P38 signaling pathway. J. Cell. Physiol. 2020;235:2220–2231. doi:10.1002/jcp.29131. [PubMed] [CrossRef] [Google Scholar]

29. Si J., Wang C., Zhang D., Wang B., Zhou Y. Osteopontin in Bone Metabolism and Bone Diseases. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020;26:e919159. doi:10.12659/MSM.919159. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Scatena M., Liaw L., Giachelli C.M. Osteopontin: A multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2007;27:2302–2309. doi:10.1161/ATVBAHA.107.144824. [PubMed] [CrossRef] [Google Scholar]

31. Hunter G.K. Role of osteopontin in modulation of hydroxyapatite formation. Calcif. Tissue Int. 2013;93:348–354. doi:10.1007/s00223-013-9698-6. [PubMed] [CrossRef] [Google Scholar]

32. De Fusco C., Messina A., Monda V., Viggiano E., Moscatelli F., Valenzano A., Esposito T., Sergio C., Cibelli G., Monda M., et al. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis. Stem Cells Int. 2017;2017:4045238. doi:10.1155/2017/4045238. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Valenick L.V., Hsia H.C., Schwarzbauer J.E. Fibronectin fragmentation promotes alpha4beta1 integrin-mediated contraction of a fibrin-fibronectin provisional matrix. Exp. Cell Res. 2005;309:48–55. doi:10.1016/j.yexcr.2005.05.024. [PubMed] [CrossRef] [Google Scholar]

34. Lenselink E.A. Role of fibronectin in normal wound healing. Int. Wound J. 2015;12:313–316. doi:10.1111/iwj.12109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Esparza Y., Ullah A., Wu J. Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int. J. Biol. Macromol. 2018;107:290–296. doi:10.1016/j.ijbiomac.2017.08.168. [PubMed] [CrossRef] [Google Scholar]

36. Wang S., Taraballi F., Tan L.P., Ng K.W. Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Res. 2012;347:795–802. doi:10.1007/s00441-011-1295-2. [PubMed] [CrossRef] [Google Scholar]

37. Kikuchi H., Barman H.K., Nakayama M., Takami Y., Nakayama T. Participation of histones, histone modifying enzymes and histone chaperones in vertebrate cell functions. Sub-Cell. Biochem. 2006;40:225–243. [PubMed] [Google Scholar]

38. Doolin T., Amir H.M., Duong L., Rosenzweig R., Urban L.A., Bosch M., Pol A., Gross S.P., Siryap*rn A. Mammalian histones facilitate antimicrobial synergy by disrupting the bacterial proton gradient and chromosome organization. Nat. Commun. 2020;3888:1–16. doi:10.1038/s41467-020-17699-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Yoshimura Y. Avian β-defensins expression for the innate immune system in hen reproductive organs. Poult. Sci. 2015;94:804–809. doi:10.3382/ps/peu021. [PubMed] [CrossRef] [Google Scholar]

40. Sugiarto H., Yu P.L. Avian antimicrobial peptides: The defense role of beta-defensins. Biochem. Biophys. Res. Commun. 2004;323:721–727. doi:10.1016/j.bbrc.2004.08.162. [PubMed] [CrossRef] [Google Scholar]

41. Cordeiro C.M., Esmaili H., Ansah G., Hincke M.T. Ovocalyxin-36 is a pattern recognition protein in chicken eggshell membranes. PLoS ONE. 2013;8:e84112. [PMC free article] [PubMed] [Google Scholar]

42. Kovacsnolan J., Cordeiro C., Young D., Mine Y., Hincke M. Ovocalyxin-36 is an effector protein modulating the production of proinflammatory mediators. Vet. Immunol. Immunopathol. 2014;160:1–11. doi:10.1016/j.vetimm.2014.03.005. [PubMed] [CrossRef] [Google Scholar]

43. Cordeiro C.M., Hincke M.T. Quantitative proteomics analysis of eggshell membrane proteins during chick embryonic development. J. Proteom. 2015;130:11–25. doi:10.1016/j.jprot.2015.08.014. [PubMed] [CrossRef] [Google Scholar]

44. Makkar S.K., Liyanage R., Kannan L., Packialakshmi B., Lay J., Rath N.C. Chicken egg shell membrane associated proteins and peptides. J. Agric. Food Chem. 2015;63:9888–9898. doi:10.1021/acs.jafc.5b04266. [PubMed] [CrossRef] [Google Scholar]

45. Concha M., Vidal A., Giacaman A., Ojeda J., Pavicic F., Oyarzun-Ampuero F.A., Torres C., Cabrera M., Moreno-Villoslada I., Orellana S.L. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018;106:2464–2471. doi:10.1002/jbm.b.34038. [PubMed] [CrossRef] [Google Scholar]

46. Zhou F., Zhang X., Cai D., Li J., Mu Q., Zhang W., Zhu S., Jiang Y., Shen W., Zhang S., et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater. 2017;63:64–75. doi:10.1016/j.actbio.2017.09.005. [PubMed] [CrossRef] [Google Scholar]

47. Shen Q., Zhang C., Mo H., Zhang H., Qin X., Li J., Zhang Z., Richel A. Fabrication of chondroitin sulfate calcium complex and its chondrocyte proliferation in vitro. Carbohydr. Polym. 2021;254:117282. doi:10.1016/j.carbpol.2020.117282. [PubMed] [CrossRef] [Google Scholar]

48. Stephenson E.L., Mishra M.K., Moussienko D., Laflamme N., Rivest S., Ling C.C., Yong V.W. Chondroitin sulfate proteoglycans as novel drivers of leucocyte infiltration in multiple sclerosis. Brain J. Neurol. 2018;141:1094–1110. doi:10.1093/brain/awy033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Khanmohammadi M., Khoshfetrat A.B., Eskandarnezhad S., Sani N.F., Ebrahimi S. Sequential optimization strategy for hyaluronic acid extraction from eggshell and its partial characterization. J. Ind. Eng. Chem. 2014;20:4371–4376. doi:10.1016/j.jiec.2014.02.001. [CrossRef] [Google Scholar]

50. Vulganová K., Ürgeová E. Extraction of hyaluronic acid from eggshell membranes. Curr. Opin. Biotechnol. 2013;24:S106. doi:10.1016/j.copbio.2013.05.324. [CrossRef] [Google Scholar]

51. Sri Devi Kumari T., Prem Kumar T. Synthesis of macroporous LiMn2O4 with avian egg membrane as a template. Ionics. 2010;16:61–66. doi:10.1007/s11581-009-0342-4. [CrossRef] [Google Scholar]

52. Guo X., Zhang F., Peng Q., Xu S., Lei X., Evans D.G., Duan X. Layered double hydroxide/eggshell membrane: An inorganic biocomposite membrane as an efficient adsorbent for Cr(VI) removal. Chem. Eng. J. 2011;166:81–87. doi:10.1016/j.cej.2010.10.010. [CrossRef] [Google Scholar]

53. Devi P.S., Banerjee S., Chowdhury S.R., Kumar G.S. Eggshell membrane: A natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv. 2012;2:11578–11585. doi:10.1039/c2ra21053c. [CrossRef] [Google Scholar]

54. Ishikawa S.-I., Suyama K., Arihara K., Itoh M. Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresour. Technol. 2002;81:201–206. doi:10.1016/S0960-8524(01)00134-1. [PubMed] [CrossRef] [Google Scholar]

55. Su H., Wang N., Dong Q., Zhang D. Incubating lead selenide nanoclusters and nanocubes on the eggshell membrane at room temperature. J. Membr. Sci. 2006;283:7–12. doi:10.1016/j.memsci.2006.07.010. [CrossRef] [Google Scholar]

56. Marcet I., Salvadores M., Rendueles M., Díaz M. The effect of ultrasound on the alkali extraction of proteins from eggshell membranes. J. Sci. Food Agric. 2018;98:1765–1772. doi:10.1002/jsfa.8651. [PubMed] [CrossRef] [Google Scholar]

57. Lunge S., Thakre D., Kamble S., Labhsetwar N., Rayalu S. Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste. J. Hazard. Mater. 2012;237–238:161–169. doi:10.1016/j.jhazmat.2012.08.023. [PubMed] [CrossRef] [Google Scholar]

58. Su H., Han J., Wang N., Dong Q., Zhang D., Zhang C. In situsynthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique. Smart Mater. Struct. 2008;17:015045. doi:10.1088/0964-1726/17/1/015045. [CrossRef] [Google Scholar]

59. Zhang M., Wang N., Xu Q., Harlina P.W., Ma M. An Efficient Method for Co-purification of Eggshell Matrix Proteins OC-17, OC-116, and OCX-36. Korean J. Food Sci. Anim. Resour. 2016;36:769–778. doi:10.5851/kosfa.2016.36.6.769. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Kodali V.K., Gannon S.A., Paramasivam S., Raje S., Polenova T., Thorpe C. A Novel Disulfide-Rich Protein Motif from Avian Eggshell Membranes. PLoS ONE. 2011;6:e18187. doi:10.1371/journal.pone.0018187. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Baker J.R., Balch D.A. A study of the organic material of hen’s-egg shell. Biochem. J. 1962;82:352–361. doi:10.1042/bj0820352. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Crombie G., Snider R., Faris B., Franzblau C. Lysine-derived cross-links in the egg shell membrane. Biochim. Biophys. Acta (BBA)-Biomembr. 1981;640:365–367. doi:10.1016/0005-2736(81)90560-5. [PubMed] [CrossRef] [Google Scholar]

63. Sah M.K., Pramanik K. Soluble-eggshell-membrane-protein-modified porous silk fibroin scaffolds with enhanced cell adhesion and proliferation properties. J. Appl. Polym. Sci. 2014;131:40138. doi:10.1002/app.40138. [CrossRef] [Google Scholar]

64. Liddington R.C., Ginsberg M.H. Integrin activation takes shape. J. Cell Biol. 2002;158:833–839. doi:10.1083/jcb.200206011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Yi F., Yu J., Guo Z.X., Zhang L.X., Li Q. Natural Bioactive Material: A Preparation of Soluble Eggshell Membrane Protein. Macromol. Biosci. 2003;3:234–237. doi:10.1002/mabi.200390030. [CrossRef] [Google Scholar]

66. Jia J., Liu G., Guo Z.-X., Yu J., Duan Y. Preparation and Characterization of Soluble Eggshell Membrane Protein/PLGA Electrospun Nanofibers for Guided Tissue Regeneration Membrane. J. Nanomater. 2012;2012:282736. doi:10.1155/2012/282736. [CrossRef] [Google Scholar]

67. Mohammadi R., Mohammadifar M.A., Mortazavian A.M., Rouhi M., Ghasemi J.B., Delshadian Z. Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM) Food Chem. 2016;190:186. doi:10.1016/j.foodchem.2015.05.073. [PubMed] [CrossRef] [Google Scholar]

68. Shi Y., Kovacs-Nolan J., Jiang B., Rong T., Mine Y. Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells. J. Funct. Foods. 2014;10:35–45. doi:10.1016/j.jff.2014.05.004. [CrossRef] [Google Scholar]

69. Ruff K.J., Morrison D., Duncan S.A., Back M., Aydogan C., Theodosakis J. Beneficial effects of natural eggshell membrane versus placebo in exercise-induced joint pain, stiffness, and cartilage turnover in healthy, postmenopausal women. Clin. Interv. Aging. 2018;13:285–295. doi:10.2147/CIA.S153782. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Hewlings S., Kalman D., Schneider L.V. A Randomized, Double-Blind, Placebo-Controlled, Prospective Clinical Trial Evaluating Water-Soluble Chicken Eggshell Membrane for Improvement in Joint Health in Adults with Knee Osteoarthritis. J. Med. Food. 2019;22:875–884. doi:10.1089/jmf.2019.0068. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Kiers J.L., Bult J.H.F. Mildly Processed Natural Eggshell Membrane Alleviates Joint Pain Associated with Osteoarthritis of the Knee: A Randomized Double-Blind Placebo-Controlled Study. J. Med. Food. 2020;24:3. doi:10.1089/jmf.2020.0034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Pillai M.M., Gopinathan J., Senthil Kumar R., Sathish Kumar G., Shanthakumari S., Sahanand K.S., Bhattacharyya A., Selvakumar R. Tissue engineering of human knee meniscus using functionalized and reinforced silk-polyvinyl alcohol composite three-dimensional scaffolds: Understanding the in vitro and in vivo behavior. J. Biomed. Mater. Res. Part A. 2018;106:1722–1731. doi:10.1002/jbm.a.36372. [PubMed] [CrossRef] [Google Scholar]

73. Adali T., Kalkan R., Karimizarandi L. The chondrocyte cell proliferation of a chitosan/silk fibroin/egg shell membrane hydrogels. Int. J. Biol. Macromol. 2019;124:541–547. doi:10.1016/j.ijbiomac.2018.11.226. [PubMed] [CrossRef] [Google Scholar]

74. Ohto-Fujita E., Shimizu M., Sano S., Kurimoto M., Yamazawa K., Atomi T., Sakurai T., Murakami Y., Takami T., Murakami T., et al. Solubilized eggshell membrane supplies a type III collagen-rich elastic dermal papilla. Cell Tissue Res. 2019;376:123–135. doi:10.1007/s00441-018-2954-3. [PubMed] [CrossRef] [Google Scholar]

75. Ahmed T.A.E., Suso H.P., Hincke M.T. Experimental datasets on processed eggshell membrane powder for wound healing. Data Brief. 2019;26:104457. doi:10.1016/j.dib.2019.104457. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Vuong T.T., Rønning S.B., Ahmed T.A.E., Brathagen K., Høst V., Hincke M.T., Suso H.P., Pedersen M.E. Processed eggshell membrane powder regulates cellular functions and increase MMP-activity important in early wound healing processes. PLoS ONE. 2018;13:e0201975. [PMC free article] [PubMed] [Google Scholar]

77. Jung J.Y., Yun H.C., Kim T.M., Joo J.W., Song I.S., Rah Y.C., Chang J., Im G.J., Choi J. Analysis of Effect of Eggshell Membrane Patching for Moderate-to-Large Traumatic Tympanic Membrane Perforation. J. Audiol. Otol. 2017;21:39–43. doi:10.7874/jao.2017.21.1.39. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Jun H.J., Oh K.H., Yoo J., Han W.G., Chang J., Jung H.H., Choi J. A new patch material for tympanic membrane perforation by trauma: The membrane of a hen egg shell. Acta Oto-Laryngol. 2014;134:250–254. doi:10.3109/00016489.2013.857784. [PubMed] [CrossRef] [Google Scholar]

79. Li J., Zhai D., Lv F., Yu Q., Ma H., Yin J., Yi Z., Liu M., Chang J., Wu C. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016;36:254–266. doi:10.1016/j.actbio.2016.03.011. [PubMed] [CrossRef] [Google Scholar]

80. Liu M., Luo G., Wang Y., Xu R., Wang Y., He W., Tan J., Xing M., Wu J. Nano-silver-decorated microfibrous eggshell membrane: Processing, cytotoxicity assessment and optimization, antibacterial activity and wound healing. Sci. Rep. 2017;7:436. doi:10.1038/s41598-017-00594-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Jia H., Hanate M., Aw W., Itoh H., Saito K., Kobayashi S., Hachimura S., f*ckuda S., Tomita M., Hasebe Y., et al. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. Sci. Rep. 2017;7:43993. doi:10.1038/srep43993. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Ramli N.S., Jia H., Sekine A., Lyu W., Furukawa K., Saito K., Hasebe Y., Kato H. Eggshell membrane powder lowers plasma triglyceride and liver total cholesterol by modulating gut microbiota and accelerating lipid metabolism in high-fat diet-fed mice. Food Sci. Nutr. 2020;8:2512–2523. doi:10.1002/fsn3.1545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Shi Y., Rupa P., Jiang B., Mine Y. Hydrolysate from eggshell membrane ameliorates intestinal inflammation in mice. Int. J. Mol. Sci. 2014;15:22728–22742. doi:10.3390/ijms151222728. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Kulshreshtha G., Ahmed T.A.E., Wu L., Diep T., Hincke M.T. A novel eco-friendly green approach to produce particalized eggshell membrane (PEM) for skin health applications. Biomater. Sci. 2020;8:5346–5361. doi:10.1039/D0BM01110J. [PubMed] [CrossRef] [Google Scholar]

85. Benson K.F., Ruff K.J., Jensen G.S. Effects of natural eggshell membrane (NEM) on cytokine production in cultures of peripheral blood mononuclear cells: Increased suppression of tumor necrosis factor-α levels after in vitro digestion. J. Med. Food. 2012;15:360–368. doi:10.1089/jmf.2011.0197. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Vuong T.T., Rønning S.B., Suso H.-P., Schmidt R., Prydz K., Lundström M., Moen A., Pedersen M.E. The extracellular matrix of eggshell displays anti-inflammatory activities through NF-κB in LPS-triggered human immune cells. J. Inflamm. Res. 2017;10:83–96. doi:10.2147/JIR.S130974. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Jinhee Y., Kimoon P., Youngji Y., Jongkeun K., Yang H., Youngjae S. Effects of Egg Shell Membrane Hydrolysates on Anti-Inflammatory, Anti-Wrinkle, Anti-Microbial Activity and Moisture-Protection. Hangug Chugsan Sigpum Haghoeji Korean J. Food Sci. Anim. Resour. 2014;34:26–32. [PMC free article] [PubMed] [Google Scholar]

88. Shi Y., Kovacs-Nolan J., Jiang B., Rong T., Mine Y. Peptides derived from eggshell membrane improve antioxidant enzyme activity and glutathione synthesis against oxidative damage in Caco-2 cells. J. Funct. Foods. 2014;11:571–580. doi:10.1016/j.jff.2014.08.017. [CrossRef] [Google Scholar]

89. Jain S., Anal A.K. Production and characterization of functional properties of protein hydrolysates from egg shell membranes by lactic acid bacteria fermentation. J. Food Sci. Technol. 2017;54:1062–1072. doi:10.1007/s13197-017-2530-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Nagamalli H., Sitaraman M., Kandalai K.K., Mudhole G.R. Chicken egg shell as a potential substrate for production of alkaline protease by Bacillus altitudinis GVC11 and its applications. 3 Biotech. 2017;7:185. doi:10.1007/s13205-017-0801-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Zhao Q.C., Zhao J.Y., Ahn D.U., Jin Y.G., Huang X. Separation and Identification of Highly Efficient Antioxidant Peptides from Eggshell Membrane. Antioxidants. 2019;8:495. doi:10.3390/antiox8100495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Li X., Cai Z., Ahn D.U., Huang X. Development of an antibacterial nanobiomaterial for wound-care based on the absorption of AgNPs on the eggshell membrane. Colloids Surf. B Biointerfaces. 2019;183:110449. doi:10.1016/j.colsurfb.2019.110449. [PubMed] [CrossRef] [Google Scholar]

93. Preda N., Costas A., Beregoi M., Apostol N., Kuncser A., Curutiu C., Iordache F., Enculescu I. Functionalization of eggshell membranes with CuO-ZnO based p-n junctions for visible light induced antibacterial activity against Escherichia coli. Sci. Rep. 2020;10:20960. doi:10.1038/s41598-020-78005-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Li X., Ma M., Ahn D.U., Huang X. Preparation and characterization of novel eggshell membrane-chitosan blend films for potential wound-care dressing: From waste to medicinal products. Int. J. Biol. Macromol. 2019;123:477–484. doi:10.1016/j.ijbiomac.2018.10.215. [PubMed] [CrossRef] [Google Scholar]

95. Armitage O.E., Strange D., Oyen M.L. Biomimetic calcium carbonate-gelatin composites as a model system for eggshell mineralization. J. Mater. Res. 2012;27:3157–3164. doi:10.1557/jmr.2012.379. [CrossRef] [Google Scholar]

96. Kirsch T., Swoboda B., von der Mark K. Ascorbate independent differentiation of human chondrocytes in vitro: Simultaneous expression of types I and × collagen and matrix mineralization. Differentiation. 1992;52:89–100. doi:10.1111/j.1432-0436.1992.tb00503.x. [PubMed] [CrossRef] [Google Scholar]

97. Zhang Y., Liu Y., Ji X., Banks C.E., Song J. Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane. Colloids Surf. B Biointerfaces. 2011;82:490–496. doi:10.1016/j.colsurfb.2010.10.006. [PubMed] [CrossRef] [Google Scholar]

98. Fernández M.S., Valenzuela F., Arias J.I., Neira-Carrillo A., Arias J.L. Is the snail shell repair process really influenced by eggshell membrane as a template of foreign scaffold? J. Struct. Biol. 2016;196:187–196. doi:10.1016/j.jsb.2016.10.001. [PubMed] [CrossRef] [Google Scholar]

99. Xu Z., Neoh K.G., Kishen A. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate. Mater. Sci. Eng. C. 2010;30:822–826. doi:10.1016/j.msec.2010.03.014. [CrossRef] [Google Scholar]

100. Arias J.L., Silva K., Neira-Carrillo A., Ortiz L., Fernández M. Polycarboxylated Eggshell Membrane Scaffold as Template for Calcium Carbonate Mineralization. Crystals. 2020;10:797. doi:10.3390/cryst10090797. [CrossRef] [Google Scholar]

101. D’Souza S.F., Kumar J., Jha S.K., Kubal B.S. Immobilization of the urease on eggshell membrane and its application in biosensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:850–854. doi:10.1016/j.msec.2012.11.010. [PubMed] [CrossRef] [Google Scholar]

102. Zhang D., Zhao H., Fan Z., Li M., Du P., Liu C., Li Y., Li H., Cao H. A Highly Sensitive and Selective Hydrogen Peroxide Biosensor Based on Gold Nanoparticles and Three-Dimensional Porous Carbonized Chicken Eggshell Membrane. PLoS ONE. 2015;10:e0130156. [PMC free article] [PubMed] [Google Scholar]

103. Li Y., Wang A., Bai Y., Wang S. Acriflavine-immobilized eggshell membrane as a new solid-state biosensor for Sudan I-IV detection based on fluorescence resonance energy transfer. Food Chem. 2017;237:966–973. doi:10.1016/j.foodchem.2017.06.050. [PubMed] [CrossRef] [Google Scholar]

104. Golafshan N., Gharibi H., Kharaziha M., Fathi M. A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering. Biofabrication. 2017;9:025008. doi:10.1088/1758-5090/aa68ed. [PubMed] [CrossRef] [Google Scholar]

105. Golafshan N., Kharaziha M., Alehosseini M. A three-layered hollow tubular scaffold as an enhancement of nerve regeneration potential. Biomed. Mater. 2018;13:065005. doi:10.1088/1748-605X/aad8da. [PubMed] [CrossRef] [Google Scholar]

106. Li Q., Bai Y., Jin T., Wang S., Cui W., Stanciulescu I., Yang R., Nie H., Wang L., Zhang X. Bioinspired Engineering of Poly(ethylene glycol) Hydrogels and Natural Protein Fibers for Layered Heart Valve Constructs. ACS Appl. Mater. Interfaces. 2017;9:16524–16535. doi:10.1021/acsami.7b03281. [PubMed] [CrossRef] [Google Scholar]

107. Yan S., Napiwocki B., Xu Y., Zhang J., Zhang X., Wang X., Crone W.C., Li Q., Turng L.S. Wavy small-diameter vascular graft made of eggshell membrane and thermoplastic polyurethane. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;107:110311. doi:10.1016/j.msec.2019.110311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Umaraw P., Munekata P.E., Verma A.K., Barba F.J., Singh V., Kumar P., Lorenzo P. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020;98:10–24. doi:10.1016/j.tifs.2020.01.032. [CrossRef] [Google Scholar]

109. Reza M., Mohammad A.M., Milad R., Mohaddeseh K., Amir M.M., Ehsan S., Sara H. Physico-mechanical and structural properties of eggshell membrane gelatin-chitosan blend edible films. Int. J. Biol. Macromol. 2018;107:406–412. [PubMed] [Google Scholar]

110. Li L., Xia N., Zhang H., Li T., Zhang H., Chi Y., Zhang Y., Liu X., Li H. Structure and properties of edible packaging film prepared by soy protein isolate-eggshell membrane conjugates loaded with Eugenol. Int. J. Food Eng. 2020;16:20200099. doi:10.1515/ijfe-2020-0099. [CrossRef] [Google Scholar]

111. Xin Y., Li C., Liu J., Liu J., Liu Y., He W., Gao Y. Adsorption of heavy metal with modified eggshell membrane and the in situ synthesis of Cu-Ag/modified eggshell membrane composites. R. Soc. Open Sci. 2018;5:180532. doi:10.1098/rsos.180532. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Al-Ghouti M.A., Khan M. Eggshell membrane as a novel bio sorbent for remediation of boron from desalinated water. J. Environ. Manag. 2018;207:405–416. doi:10.1016/j.jenvman.2017.11.062. [PubMed] [CrossRef] [Google Scholar]

113. Mirzaei S., Javanbakht V. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. Int. J. Biol. Macromol. 2019;134:1187–1204. doi:10.1016/j.ijbiomac.2019.05.119. [PubMed] [CrossRef] [Google Scholar]

114. Zhao J., Wen X., Xu H., Weng Y., Chen Y. Fabrication of recyclable magnetic biosorbent from eggshell membrane for efficient adsorption of dye. Environ. Technol. 2020;41:1–13. doi:10.1080/09593330.2020.1760355. [PubMed] [CrossRef] [Google Scholar]

115. Li Y., Wang A., Bai Y., Wang S. Evaluation of a mixed anionic-nonionic surfactant modified eggshell membrane as an advantageous adsorbent for the solid-phase extraction of Sudan I-IV as model analytes. J. Sep. Sci. 2017;40:2591–2602. doi:10.1002/jssc.201700094. [PubMed] [CrossRef] [Google Scholar]

116. Bessashia W., Berredjem Y., Hattab Z., Bououdina M. Removal of Basic Fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: Equilibrium, kinetics, and thermodynamic studies. Environ. Res. 2020;186:109484. doi:10.1016/j.envres.2020.109484. [PubMed] [CrossRef] [Google Scholar]

117. Parvin S., Biswas B.K., Rahman M.A., Rahman M.H., Anik M.S., Uddin M.R. Study on adsorption of Congo red onto chemically modified egg shell membrane. Chemosphere. 2019;236:124326. doi:10.1016/j.chemosphere.2019.07.057. [PubMed] [CrossRef] [Google Scholar]

118. Wedekind K.J., Ruff K.J., Atwell C.A., Evans J.L., Bendele A.M. Beneficial effects of natural eggshell membrane (NEM) on multiple indices of arthritis in collagen-induced arthritic rats. Mod. Rheumatol. 2017;27:838–848. doi:10.1080/14397595.2016.1259729. [PubMed] [CrossRef] [Google Scholar]

119. Guarderas F., Leavell Y., Sengupta T., Zhukova M., Megraw T.L. Assessment of Chicken-Egg Membrane as a Dressing for Wound Healing. Adv. Ski. Wound Care. 2016;29:131–134. doi:10.1097/01.ASW.0000480359.58866.e9. [PubMed] [CrossRef] [Google Scholar]

120. Kessi E., Arias J.L. Using Natural Waste Material as a Matrix for the Immobilization of Enzymes: Chicken Eggshell Membrane Powder for β-Galactosidase Immobilization. Appl. Biochem. Biotechnol. 2019;187:101–115. doi:10.1007/s12010-018-2805-4. [PubMed] [CrossRef] [Google Scholar]

121. Datta S., Kanjilal B., Sarkar P. Silver nanoparticles decorated eggshell membrane as an effective platform for interference free sensing of dopamine. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2018;53:1048–1055. doi:10.1080/10934529.2018.1474574. [PubMed] [CrossRef] [Google Scholar]

122. Girelli A.M., Scuto F.R. Eggshell membrane as feedstock in enzyme immobilization. J. Biotechnol. 2020;325:241–249. doi:10.1016/j.jbiotec.2020.10.016. [PubMed] [CrossRef] [Google Scholar]

123. Xue G., Yue Z., Bing Z., Yiwei T., Xiuying L., Jianrong L. Highly-sensitive organophosphorus pesticide biosensors based on CdTe quantum dots and bi-enzyme immobilized eggshell membranes. Analyst. 2016;141:1105–1111. doi:10.1039/C5AN02163D. [PubMed] [CrossRef] [Google Scholar]

124. Liu M., Liu T., Zhang X., Jian Z., Xia H., Yang J., Hu X., Xing M., Luo G., Wu J. Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization. Int. J. Nanomed. 2019;14:3345–3360. doi:10.2147/IJN.S199618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Yang T., Li Y., Ma M., Lin Q., Sun S., Zhang B., Feng X., Liu J. Protective effect of soluble eggshell membrane protein hydrolysate on cardiac ischemia/reperfusion injury. Food Nutr. Res. 2015;59:28870. doi:10.3402/fnr.v59.28870. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Farjah G.H., Mohammdzadeh S., Zirak Javanmard M. The effect of lycopene in egg shell membrane guidance channel on sciatic nerve regeneration in rats. Iran. J. Basic Med. Sci. 2020;23:527–533. [PMC free article] [PubMed] [Google Scholar]

127. Asgari G., Dayari A. Experimental dataset on acid treated eggshell for removing cyanide ions from synthetic and industrial wastewaters. Data Brief. 2018;16:442–452. doi:10.1016/j.dib.2017.11.048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Choi H.J. Use of methyl esterified eggshell membrane for treatment of aqueous solutions contaminated with anionic sulfur dye. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2017;76:2638–2646. doi:10.2166/wst.2017.346. [PubMed] [CrossRef] [Google Scholar]

129. Ruff K.J., Endres J.R., Clewell A.E., Szabo J.R., Schauss A.G. Safety evaluation of a natural eggshell membrane-derived product. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012;50:604–611. doi:10.1016/j.fct.2011.12.036. [PubMed] [CrossRef] [Google Scholar]

130. Park S., Choi K.S., Lee D., Kim D., Lim K.T., Lee K.H., Seonwoo H., Kom J. Eggshell membrane: Review and impact on engineering. Biosyst. Eng. 2016;151:446–463. doi:10.1016/j.biosystemseng.2016.10.014. [CrossRef] [Google Scholar]

Avian Eggshell Membrane as a Novel Biomaterial: A Review (2024)
Top Articles
Latest Posts
Article information

Author: Greg Kuvalis

Last Updated:

Views: 6718

Rating: 4.4 / 5 (55 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Greg Kuvalis

Birthday: 1996-12-20

Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

Phone: +68218650356656

Job: IT Representative

Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.