Gene Therapy and its Application in Dermatology (2024)

1. Lin M, Pulkkinen L, Uitto J, Yoon K. The gene gun: Current applications in cutaneous gene therapy. Int J Dermatol. 2000;39:161–70. [PubMed] [Google Scholar]

2. Kay MA. State-of-the-art gene-based therapies: The road ahead. Nat Rev Genet. 2011;12:316–28. [PubMed] [Google Scholar]

3. Sheridan C. Gene therapy finds its niche. Nat Biotechnol. 2011;29:121–8. [PubMed] [Google Scholar]

4. Oldfield EH, Ram Z, Culver KW, Blaese MR, DeVroom HL, Anderson WF. Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum Gen Ther. 1993;4:39–69. [PubMed] [Google Scholar]

5. Lewin A, Glazer PM, Milstone LM. Gene therapy for autosomal dominant disorders of keratin. J Investig Dermatol Symp Proc. 2005;10:47–61. [PubMed] [Google Scholar]

6. Khavari PA, Rollman O, Vahlquist A. Cutaneous gene transfer for skin and systemic diseases. J Intern Med. 2002;252:1–10. [PubMed] [Google Scholar]

7. Baek SC, Lin Q, Robbins PB, Fan H, Khavari PA. Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum Gene Ther. 2001;12:1551–8. [PubMed] [Google Scholar]

8. Wraight CJ, White PJ. Antisense oligonucleotides in cutaneous therapy. Pharmacol Ther. 2001;90:89–104. [PubMed] [Google Scholar]

9. Lewin AS, Hauswirth WW. Ribozyme gene therapy: Applications for molecular medicine. Trends Mol Med. 2001;7:221–8. [PubMed] [Google Scholar]

10. Phylactou LA, Kilpatrick MW, Wood MJ. Ribozymes as therapeutic tools for genetic disease. Hum Mol Genet. 1998;7:1649–53. [PubMed] [Google Scholar]

11. Robbins PB, Khavari PA. Strategies for cutaneous gene therapy. Curr Probl Dermatol. 2000;12:198–203. [Google Scholar]

12. Chen Y, Cao J, Xiong M, Petersen AJ, Dong Y, Tao Y, et al. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell. 2015;17:233–44. [PMC free article] [PubMed] [Google Scholar]

13. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55. [PMC free article] [PubMed] [Google Scholar]

14. Borem A, Santos FR, Bowen DE. Understanding Biotechnology. 1st ed. New Jersy: Prentice Hall; 2003. Gene therapy; pp. 87–98. [Google Scholar]

15. Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007—An update. J Gene Med. 2007;9:833–42. [PubMed] [Google Scholar]

16. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9. [PubMed] [Google Scholar]

17. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucl Acids Res. 2005;33:5978–90. [PMC free article] [PubMed] [Google Scholar]

18. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012—An update. J Gene Med. 2013;15:65–77. [PubMed] [Google Scholar]

19. Hirsch T, von Peter S, Dubin G, Mittler D, Jacobsen F, Lehnhardt M, et al. Adenoviral gene delivery to primary human cutaneous cells and burn wounds. Mol Med. 2006;12:199–207. [PMC free article] [PubMed] [Google Scholar]

20. Chen M, Li W, Fan J, Kasahara N, Woodley D. An efficient gene transduction system for studying gene function in primary human dermal fibroblast and epidermal keratinocytes. Clin Exp Dermatol. 2003;28:193–9. [PubMed] [Google Scholar]

21. Distler JH, Jungel A, Kurowska-Stolarska M, Michel BA, Gay RE, Gay S, et al. Nucleofection: A new, highly efficient transfection method for primary human keratinocytes. Exp Dermatol. 2005;14:315–20. [PubMed] [Google Scholar]

22. Mecklenbeck S, Compton SH, Mejia JE, Cervini R, Hovnanian A, Bruckner-Tuderman L, et al. A microinjected COL7A1-PAC vector restores synthesis of intact procollagen VII in a dystrohic epidermolysis bullosa keratinocytes cell line. Hum Gene Ther. 2002;13:1655–62. [PubMed] [Google Scholar]

23. Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300:763. [PubMed] [Google Scholar]

24. Pabo CO, Peisach E, Grant RA. Design and selection of novel CYS2HIS2 zinc finger proteins. Ann Rev Biochem. 2001;70:313–40. [PubMed] [Google Scholar]

25. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6. [PMC free article] [PubMed] [Google Scholar]

26. Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther. 2013;21:1151–9. [PMC free article] [PubMed] [Google Scholar]

27. Tolmachov OE. Building mosaics of therapeutic plasmid gene vectors. Curr Gene Ther. 2011;11:466–78. [PubMed] [Google Scholar]

28. Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J. A new DNA vehicle for nonviral gene delivery: Supercoiled minicircle. Gene Ther. 1997;4:1341–9. [PubMed] [Google Scholar]

29. Chen Z. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8:495–500. [PubMed] [Google Scholar]

30. Fan H, Lin Q, Morrissey GR, Khavari PA. Immunization via hair follicles by topical application of naked DNA to normal skin. Nat Biotechnol. 1999;17:870–2. [PubMed] [Google Scholar]

31. Hengge UR, Chan EF, Foster RA, Walder PS, Vogel JC. Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nat Gen. 1995;10:161–6. [PubMed] [Google Scholar]

32. Sawamura D, Meng X, Ina S, Ishikawa H, Tamai K, Nomura K, et al. In vivo transfer of a foreign gene to keratinocytes using the hemagglutinating virus of Japan-liposome method. J Invest Dermatol. 1997;108:195–9. [PubMed] [Google Scholar]

33. Williams RS, Johnston SA, Riedy M, DeVit MJ, McElligott SG, Sanford JC. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci. 1991;88:2726–30. [PMC free article] [PubMed] [Google Scholar]

34. Mohammed AJ, AlAwaidy S, Bawikar S, Kurup PJ, Elamir E, Shaban MM, et al. Fractional doses of inactivated poliovirus vaccine in Oman. N Engl J Med. 2010;362:2351–9. [PubMed] [Google Scholar]

35. Dean HJ, Chen D. Epidermal powder immunization against influenza. Vaccine. 2004;23:681–6. [PubMed] [Google Scholar]

36. Miller DL, Pislaru SV, Greenleaf JE. Sonoporation: Mechanical DNA delivery by ultrasonic cavitation. Somat Cell Mol Genet. 2002;27:115–34. [PubMed] [Google Scholar]

37. Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta. 1991;1088:131–4. [PubMed] [Google Scholar]

38. Kardos TJ, Rabussay DP. Contactless magneto-permeabilization for intracellular plasmid DNA delivery in-vivo. Hum Vaccin Immunother. 2012;8:1707–13. [PMC free article] [PubMed] [Google Scholar]

39. Pearton M, Saller V, Coulman SA, Gateley C, Anstey AV, Zarnitsyn V, et al. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J Control Release. 2012;160:561–9. [PMC free article] [PubMed] [Google Scholar]

40. Ditto AJ, Shah PN, Yun YH. Non-viral gene delivery using nanoparticles. Exp Opin Drug Deliv. 2009;6:1149–60. [PubMed] [Google Scholar]

41. Zheng D, Giljohann DA, Chen DL, Massich MD, Wang XQ, Iordanov H, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci. 2012;109:11975–80. [PMC free article] [PubMed] [Google Scholar]

42. Ghazizadeh S, Kalish RS, Taichman LB. Immune mediated loss of transgene expression in skin: Implication for cutaneous gene therapy. Mol Ther. 2003;7:296–303. [PMC free article] [PubMed] [Google Scholar]

43. Tan PH, Butelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC, et al. Modulation of human dendritic cell function following transduction with viral vectors: Implication for gene therapy. Blood. 2005;105:3824–32. [PubMed] [Google Scholar]

44. Tan PH, Yates JB, Xue SA, Chan C, Jordan WJ, Harper JE, et al. Creation of tolerogenic human dendritic cells via intracellular CTLA4: A novel strategy with potential in clinical immunosuppression. Blood. 2005;106:2936–43. [PubMed] [Google Scholar]

45. Lazarovits AI, Poppema S, Zhang Z, Khandaker M, Le Feuvre CE, Singhal SK, et al. Prevention and reversal of renal allograft rejection by antibody against CD45RB. Nature. 1996;380:717–20. [PubMed] [Google Scholar]

46. Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996;381:434–8. [PubMed] [Google Scholar]

47. Tan PH. 9th American Society of Gene Therapy Annual Meeting. Expert Opin Biol Ther. 2006;6:839–42. [PubMed] [Google Scholar]

48. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell. 1975;6:331–43. [PubMed] [Google Scholar]

49. Petersen MJ, Kaplan J, Jorgensen CM, Schmidt LA, Li L, Morgan JR, et al. Sustained production of human transferrin by transduced fibroblasts implanted into athymic mice: A model for somatic gene therapy. J Invest Dermatol. 1995;104:171–6. [PubMed] [Google Scholar]

50. Morgan JR, Barrandon Y, Green H, Mulligan RC. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science. 1987;237:1476–9. [PubMed] [Google Scholar]

51. Fenjves ES, Gordon DA, Pershing LK, Williams DL, Taichman LB. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: Implications for epidermal function and gene therapy. Proc Natl Acad Sci USA. 1989;86:8803–7. [PMC free article] [PubMed] [Google Scholar]

52. Gerrard AJ, Hudson DL, Brownlee GG, Watt FM. Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet. 1993;3:180–3. [PubMed] [Google Scholar]

53. Cao T, Wang XJ, Roop DR. Regulated cutaneous gene delivery: The skin as a bioreactor. Hum Gene Ther. 2000;11:2297–300. [PubMed] [Google Scholar]

54. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci. 1979;76:5665–8. [PMC free article] [PubMed] [Google Scholar]

55. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 1981;211:1052–4. [PubMed] [Google Scholar]

56. Katz AB, Taichman LB. A partial catalogue of proteins secreted by epidermal keratinocytes in culture. J Invest Dermatol. 1999;112:818–21. [PubMed] [Google Scholar]

57. Meng X, Sawamura D, Ina S, Tamai K, Hanada K, Hashimoto I. Keratinocyte gene therapy: Cytokine gene expression in local keratinocytes and in circulation by introducing cytokine genes into skin. Exp Dermatol. 2002;11:456–61. [PubMed] [Google Scholar]

58. Greenhalgh DA, Rothnagel JA, Roop DR. Epidermis: An attractive target for gene therapy. J Invest Dermatol. 1994;103:63S–9S. [PubMed] [Google Scholar]

59. Has C, Spartà G, Kiritsi D, Weibel L, Moeller A, Vega-Warner V, et al. Integrin α3 mutations with kidney, lung and skin disease. N Engl J Med. 2012;366:1508–14. [PMC free article] [PubMed] [Google Scholar]

60. Petek L, Fleckman P, Miller D. Efficient KRT14 targeting and functional characterization of transplanted human keratinocytes for the treatment of epidermolysis bullosa simplex. Mol Ther. 2010;18:1624–32. [PMC free article] [PubMed] [Google Scholar]

61. Terron A, McLean WH. Ribozyme gene therapy for keratin disorders. Acta Derm Venereol. 2001;81:237. [Google Scholar]

62. Wally V, Brunner M, Lettner T, Wagner M, Koller U, Trost A, et al. K14 mRNA reprogramming for dominant epidermolysis bullosa simplex. Hum Mol Genet. 2010;19:4715–25. [PubMed] [Google Scholar]

63. Bowden PE. Gene therapy for keratin genodermatoses: Striving forward but obstacles persist. J Invest Dermatol. 2011;131:1403–5. [PubMed] [Google Scholar]

64. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12:1397–402. [PubMed] [Google Scholar]

65. Ferrari S, Pellegrini G, Matsui T, Mavilio F, De Luca M. Gene therapy in combination with tissue engineering to treat epidermolysis bullosa. Exp Opin Biol Ther. 2006;6:367–78. [PubMed] [Google Scholar]

66. Ortiz-Urda S, Lin Q, Yant SR, Keene D, Kay MA, Khavari PA. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther. 2003;10:1099–104. [PubMed] [Google Scholar]

67. Dallinger G, Puttaraju M, Mitchell LG, Yancey KB, Yee C, Klausegger A, et al. Development of spliceosome-mediated RNA trans -splicing (SMaRT) for the correction of inherited skin diseases. Exp Dermatol. 2003;12:37–46. [PubMed] [Google Scholar]

68. Robbins PB, Lin Q, Goodnough JB, Tian H, Chen X, Khavari PA. In vivo restoration of laminin 5 beta 3 expression and function in junctional epidermolysis bullosa. Proc Natl Acad Sci USA. 2001;98:5193–8. [PMC free article] [PubMed] [Google Scholar]

69. Seitz CS, Giudice GJ, Balding SD, Marinkovich MP, Khavari PA. BP180 gene delivery in junctional epidermolysis bullosa. Gene Ther. 1999;6:42–7. [PubMed] [Google Scholar]

70. Abbasi J. Clinical advances in human gene therapies. JAMA. 2018;319:113–5. [PubMed] [Google Scholar]

71. Fine JD, Eady RA, Bauer EA, Briggaman RA, Bruckner-Tuderman L, Christiano A, et al. Revised classification system for inherited epidermolysis bullosa: Report of the Second International Consensus Meeting on Diagnosis and Classification of Epidermolysis Bullosa. J Am Acad Dermatol. 2000;42:1051–66. [PubMed] [Google Scholar]

72. Uitto J, Richard G. Progress in epidermolysis bullosa: From eponyms to molecular genetic classification. Clin Dermatol. 2005;23:33–40. [PubMed] [Google Scholar]

73. Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Fang M, Calos MP, et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med. 2002;8:1166–70. [PubMed] [Google Scholar]

74. Ortiz-Urda S, Lin Q, Green C, Keene D, Marinkovich MP, Khavari P. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest. 2003;111:251–5. [PMC free article] [PubMed] [Google Scholar]

75. Woodley DT, Krueger GG, Jorgensen CM, Fairley JA, Atha T, Huang Y, et al. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basem*nt membrane zone. J Invest Dermatol. 2003;121:1021–8. [PubMed] [Google Scholar]

76. Goto M, Sawamura D, Ito K, Abe M, Nishie W, Sakai K, et al. Fibroblast show more potential as target cells than keratinocytes in COL7A1 gene therapy of dystrophic epidermolysis bullosa. J Invest Dermatol. 2006;126:766–72. [PubMed] [Google Scholar]

77. Abdul-Wahab A, Qasim W, McGrath JA. Gene therapies for inherited skin disorders. Sem Cutan Med Surg. 2014;33:83–90. [PubMed] [Google Scholar]

78. Uitto J, Bruckner-Tuderman L, Christiano AM, McGrath JA, Has C, South AP, et al. Progress toward treatment and cure of epidermolysis bullosa: Summary of the DEBRA International Research Symposium EB2015. J Invest Dermatol. 2016;136:352–8. [PMC free article] [PubMed] [Google Scholar]

79. Gache Y, Baldeschi C, Del Rio M, Gagnoux-Palacios L, Larcher F, Lacour JP, et al. Construction of skin equivalents for gene therapy of recessive dystrophic epidermolysis bullosa. Hum Gene Ther. 2004;15:921–33. [PubMed] [Google Scholar]

80. Woodley DT, Keene DR, Atha T, Huang Y, Ram R, Kasahara N, et al. Intradermal injection of lentiviral vectors corrects regenerated human dystrophic epidermolysis bullosa skin tissue in vivo. Mol Ther. 2004;10:318–26. [PubMed] [Google Scholar]

81. Khul T, Mezger M, Hausser I, Handgretinger R, Bruckner-Tuderman L, Nystrom A. High local concentrations of intradermal MSCs restore skin integrity and facilitate wound healing in dystrophic epidermolysis bullosa. Mol Ther. 2015;23:1368–79. [PMC free article] [PubMed] [Google Scholar]

82. Goto M, Sawamura D, Nishie W, Sakai K, McMillan JR, Akiyama M, et al. Targeted skipping of a single exon harboring a premature termination codon mutation: Implications and potential for gene correction therapy for selective dystrophic epidermolysis bullosa patients. J Invest Dermatol. 2006;126:2614–20. [PubMed] [Google Scholar]

83. Murauer EM, Gache Y, Gratz IK, Klausegger A, Muss W, Gruber C, et al. Functional correction of type VII collagen expression in dystrophic epidermolysis bullosa. J Invest Dermatol. 2011;131:74–83. [PubMed] [Google Scholar]

84. Chamorro C, Mencia A, Almarza D, Duarte B, Büning H, Sallach J, et al. Gene editing for the efficient correction of a recurrent COL7A1 mutation in recessive dystrophic epidermolysis bullosa keratinocytes. Mol Ther Nucleic Acids. 2016;5:e307. [PMC free article] [PubMed] [Google Scholar]

85. Leachman S, Hickerson R, Schwartz M, Bullough E, Hutcherson S, Boucher K, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther. 2010;18:442–6. [PMC free article] [PubMed] [Google Scholar]

86. Di WL, Larcher F, sem*nova E, Talbot GE, Harper JI, Del Rio M, et al. Ex-vivo gene therapy restores LEKTI activity and corrects the architecture of Netherton syndrome-derived skin grafts. Mol Ther. 2011;19:408–16. [PMC free article] [PubMed] [Google Scholar]

87. Roedl D, Oji V, Buters JTM, Behrendt H, Braun-Falco M. rAAV2-mediated restoration of LEKTI in LEKTI-deficient cells from Netherton patients. J Dermatol Sci. 2011;61:194–8. [PubMed] [Google Scholar]

88. Haug S, Braun Falco M. Adeno-associated virus vectors are able to restore fatty aldehyde dehydrogenase-deficiency. Implications for gene therapy in Sjogren-Larsson syndrome. Arch Dermatol Res. 2005;296:568–72. [PubMed] [Google Scholar]

89. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74. [PubMed] [Google Scholar]

90. Warrick E, Garcia M, Chagnoleau C, Chevallier O, Bergoglio V, Sartori D, et al. Preclinical corrective gene transfer in xeroderma pigmentosum human skin stem cells. Mol Ther. 2012;20:798–807. [PMC free article] [PubMed] [Google Scholar]

91. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of non-dividing cells by a lentiviral vector. Science. 1996;272:263–7. [PubMed] [Google Scholar]

92. Marchetto MCN, Muotri A, Burns D, Friedberg E, Menck CFM. Gene transduction in skin cells: Preventing cancer in xeroderma pigmentosum mice. Proc Natl Acad Sci. 2004;101:17759–64. [PMC free article] [PubMed] [Google Scholar]

93. Choate KA, Kinsella TM, Wiliams ML, Nolan GP, Khavari PA. Transglutaminase 1 delivery to lamellar ichthyosis keratinocytes.Hum. Gene Ther. 1996;7:2247–53. [PubMed] [Google Scholar]

94. Choate KA, Medalie DA, Morgan JR, Khavari PA. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nat Med. 1996;2:1263–7. [PubMed] [Google Scholar]

95. Freiberg RA, Choate KA, Deng H, Alperin ES, Shapiro LJ, Khavari PA. A model of corrective gene transfer in X-linked ichthyosis. Hum Mol Genet. 1997;6:927–33. [PubMed] [Google Scholar]

96. Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest. 2005;115:1777. [PMC free article] [PubMed] [Google Scholar]

97. Fontana R, Bregni M, Cipponi A, Raccosta L, Rainelli C, Maggioni D, et al. Peripheral blood lymphocytes genetically modified to express the self/tumor antigen MAGE-A3 induce antitumor immune responses in cancer patients. Blood. 2009;113:1651–60. [PubMed] [Google Scholar]

98. Dummer R, Rochlitz C, Velu T, Acres B, Limacher JM, Bleuzen P, et al. Intralesional adenovirus-mediated interleukin-2 gene transfer for advanced solid cancers and melanoma. Mol Ther. 2008;16:985–94. [PubMed] [Google Scholar]

99. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29:917–24. [PMC free article] [PubMed] [Google Scholar]

100. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9. [PMC free article] [PubMed] [Google Scholar]

101. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediate cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535–46. [PMC free article] [PubMed] [Google Scholar]

102. O'Malley BW, Jr, Chen SH, Schwartz MR, Woo SL. Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mouse model. Cancer Res. 1995;55:1080–5. [PubMed] [Google Scholar]

103. Liechty KW, Nesbit M, Herlyn M, Radu A, Adzick NS, Crombleholme TM. Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. J Invest Dermatol. 1999;113:375–83. [PubMed] [Google Scholar]

104. Tyrone JW, Mogford JE, Chandler LA, Ma C, Xia Y, Pierce GF, et al. Collagen-embedded platelet-derived growth factor DNA plasmid promotes wound healing in a dermal ulcer model. J Surg Res. 2000;93:230–6. [PubMed] [Google Scholar]

105. Galeano M, Deodato B, Altavilla D, Cucinotta D, Arsic N, Marini H, et al. Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia. 2003;46:546–55. [PubMed] [Google Scholar]

106. Chesnoy S, Lee P-Y, Huang L. Intradermal injection of transforming growth factor-β1 gene enhances wound healing in genetically diabetic mice. Pharm Res. 2003;20:345–50. [PubMed] [Google Scholar]

107. Vranckx JJ, Hoeller D, Velander PE, Theopold CF, Petrie N, Takedo A, et al. Cell suspension cultures of allogenic keratinocytes are efficient carriers for ex vivo gene transfer and accelerate the healing of full-thickness skin wounds by overexpression of human epidermal growth factor. Wound Repair Regen. 2007;15:657–64. [PubMed] [Google Scholar]

108. Hirsch T, Spielmann M, Velander P, Zuhaili B, Bleiziffer O, Fossum M, et al. Insulin-like growth factor-1 gene therapy and cell transplantation in diabetic wounds. J Gene Med. 2008;10:1247–52. [PubMed] [Google Scholar]

109. Yoon CS, Jung HS, Kwon MJ, Lee SH, Kim CW, Kim MK, et al. Sonoporation of the minicircle-VEGF165 for wound healing of diabetic mice. Pharm Res. 2009;26:794–801. [PubMed] [Google Scholar]

110. Margolis D, Morris L, Papadopoulos M, Weinberg L, Filip J, Lang S, et al. Phase I study of H5.020CMV.PDGF-ß to treat venous leg ulcer disease. Mol Ther. 2009;17:1822–9. [PMC free article] [PubMed] [Google Scholar]

111. Kwon MJ, An S, Choi S, Nam K, Jung HS, Yoon CS, et al. Effective healing of diabetic skin wounds by using nonviral gene therapy based on minicircle vascular endothelial growth factor DNA and a cationic dendrimer. J Gene Med. 2012;14:272–8. [PubMed] [Google Scholar]

112. Park HJ, Lee J, Kim MJ, Kang T, Jeong Y, Um S, et al. Sonic hedgehog intradermal gene therapy using a biodegradable poly (β-amino esters) nanoparticle to enhance wound healing. Biomaterials. 2012;33:9148–56. [PubMed] [Google Scholar]

Gene Therapy and its Application in Dermatology (2024)
Top Articles
Latest Posts
Article information

Author: Twana Towne Ret

Last Updated:

Views: 6350

Rating: 4.3 / 5 (64 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Twana Towne Ret

Birthday: 1994-03-19

Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

Phone: +5958753152963

Job: National Specialist

Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.